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Abstract. We study existence and uniqueness of almost automorphic solutions for
nonlinear partial difference-differential equations modeled in abstract form as

(∗) ∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,
for 0 < α ≤ 1 where A is the generator of a C0-semigroup defined on a Banach space X,
∆α denote fractional difference in Weyl-like sense and f satisfies Lipchitz conditions of
global and local type. We introduce the notion of α-resolvent sequence {Sα(n)}n∈N0

⊂
B(X) and we prove that a mild solution of (∗) corresponds to a fixed point of

u(n+ 1) =

n∑
j=−∞

Sα(n− j)f(j, u(j)), n ∈ Z.

We show that such mild solution is strong in case of the forcing term belongs to an
appropriate weighted Lebesgue space of sequences. Application to a model of population
of cells is given.

1. Introduction

Our concern in this paper is the study of the existence and uniqueness of almost auto-
morphic solutions for the nonlinear fractional difference equation

(1.1) ∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,
where A is a closed linear operator with domain D(A) defined on a Banach space X and
0 < α ≤ 1.

So far the study on fractional difference equations focuses in the discussion of different
but related definitions that may allow nice properties of calculus [5, 20, 21, 26, 27, 1,
40], existence of solutions of different classes of nonlinear fractional difference equations
and in the development of qualitative properties such as existence of positive solutions
and geometrical properties [5, 23, 24]. In the last time, applications to concrete models
have been analyzed [6, 7]. Nonetheless, all these studies are concentrated either in finite
dimensional cases or, concerning (1.1), at most a bounded operator A, which resembles
the study of ordinary differential equations. However, the fractional modeling of partial
differential equations that have a mixed character, i.e. that can be modeled both in
discrete time as well as in continuous space (or vice-versa), is an untreated topic that
deserves to be investigated. We observe that a wide range of this class of models can be
represented abstractly by (1.1), where A is an unbounded operator.
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For instance, abstract difference equations of the form (1.1) with α = 1 appears nat-
urally in traffic dynamics [13], [28]. In such case, the equation of motion of a line of
identical vehicles is given by (1.1) where A = ρ ∂

∂t
is a differential and, consequently, un-

bounded operator. Here ρ > 0 is a positive number that incorporates the information on
the mass of each vehicle and the sensitivity of the control mechanism [13, p. 170]. In
recent years, the significance of such models has increased and a detailed understanding of
this key process is now becoming more important. We observe that, in appropriate spaces
of functions, the differential operator ρ ∂

∂t
is the generator of the well known C0-semigroup

of translations [19, Chapter II, Section 2.10].
It is noteworthy that mixed partial difference-differential equations occur not only in

traffic dynamics, but also in the theory of probability and in the theory of the chain
processes of chemistry and radioactivity [8, p.498]. Thus, the analysis of (1.1) for 0 <
α < 1 and A being the generator of a C0-semigroup should provide new insights of the
discrete sub diffusive behavior of the equation because it incorporate memory effects of
the materials used for each specific model.

On the other hand, we recall that the concept of almost automorphic functions was
introduced by S. Bochner four decades ago. The interest in almost automorphic solutions
of evolution equations and their applications has been an important topic of research in the
last time. See [39], [31], [17] and references therein. New methods and new concepts have
been introduced in the literature in the last decade. The range of applications include
at present linear and nonlinear evolution equations, integro-differential and functional-
differential equations, dynamical systems, and so on [30, 10, 33, 22, 44].

The study of almost automorphic solutions for difference equations constitutes a recent
research area. This generalizes the analysis of almost periodic solutions for difference
equations which have been more deeply investigated. Almost periodic sequences appeared
early in the theory of almost periodic functions [14]. General results concerning almost pe-
riodic solutions for difference equations are available nowadays. For instance, we mention
those related to positive solutions and asymptotic solutions [18, 36]. For more information,
we refer to the monograph [14] and references therein. In contrast, the concept of almost
automorphic sequence was introduced only recently by Minh, Naito and N’Guérékata in
[38, Definition 2.6] and it was later contained in the works of Caraballo and Cheban [11],
[12]. A first systematic study of their main properties listed in [4] and further generaliza-
tions and applications has been performed in [29], [16], [32] and [2], among others. Beyond
that a discrete theory is strongly motivated by applications e.g. in population biology,
in addition, it serves as a basic tool to understand numerical discretization and is often
essential for the analysis of continuous problems. Concerning (1.1), almost automorphic
functions could play the role of harmonic oscillations covered with big noise [45].

The first open problem in order to begin the study of the existence of almost auto-
morphic solutions to (1.1) is to find an adequate notion of fractional difference operator.
Indeed, there are multiple definitions of the fractional difference (both delta and nabla),
which are well known to be translationally equivalent to one another [9]. Nonetheless,
these definitions do have various peculiarities, which affect their use in the study of par-
ticular problems.

In this paper, we solve this problem, by proposing a definition of Weyl-like fractional
difference by means of which the treatment of abstract fractional difference equations
defined on the time scale Z seems to be feasible. In this way, our definition set at least
one avenue of research, whose study is perhaps easier by the utilization of a modified
definition of the fractional delta difference. Indeed, one of our main results show that
our definition of Weyl-like fractional difference is consistent with the solution of (1.1)
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interpreted as a fixed point of the problem

(1.2) u(n) =
n−1∑
j=−∞

Sα(n− 1− j)f(j, u(j)), n ∈ Z

where Sα(n) is a sequence of bounded and linear operators that commutes with A on
D(A) and satisfy the property

(1.3) Sα(n)x = kα(n)x+ A(kα ∗ Sα)(n)x, x ∈ X,
for all n ∈ N0, where

(1.4) kα(n) :=
Γ(n+ α)

Γ(α)Γ(n+ 1)
.

Our second main contribution in this paper is the introduction of a method of analysis
of existence and qualitative behavior of solutions for (1.1) by means of the sequence of
operators (1.3). In fact, they play the role of the semigroup T (t) generated by A in

the solution formula u(t) =

∫ t

−∞
T (t − s)f(s, u(s))ds of the classical problem u′(t) =

Au(t) + f(t, u(t)) for t ∈ R. The sequence of operators Sα(n) has the advantage that it
have the following representation:

Sα(n)x =
n∑
j=1

βα,n(j)(I − A)−(j+1)x, n ∈ N, x ∈ X.

This is due to the fact that (1.3) implies that the operator I − A must be invertible and
that Sα(0) = (I − A)−1 in contrast with the case of the scale R where the behavior near
to zero of the family of operators determined by the linear part of fractional differential
equations is not well described, in general. This is explained, of course, by the discrete
character of the scale Z.

This paper is organized as follows: Section 2 is mainly devoted to recall the defini-
tion of almost automorphic sequence and to introduce the concept of Weyl-like fractional
difference (Definition 2.3) by means of the notion of Weyl-like fractional sum. It incorpo-
rates the kernel (1.4) that seems to be at the basis of the discretization of the continuous
fractional differential operator in the sense of Riemann-Liouville [15, 40, 34]. In Section
3 we introduce an operator theoretical method for the treatment of the linear part of
(1.1) (Definition 3.1). It is interesting to note the regularized character of the introduced
concept of operator resolvent sequence (Theorem 3.2). More importantly, whenever the
operator A in (1.1) is the generator of a C0-semigroup, an explicit form of such operator
resolvent sequence can be given (Theorem 3.5). This characteristic allows an analysis of
qualitative properties, like summability, which turns out to be important for the study of
almost automorphic solutions of (1.1). Section 4 is concerned with the study of the non
homogeneous linear difference equation

∆αu(n) = Au(n+ 1) + f(n), n ∈ Z.
The main objective is to prove the consistence of the given concept of Weyl-like fractional
difference and the representation of the solution of (1.1) by means of the formula (1.2),
see Theorem 4.2. Then, the notion of mild solution is introduced and our first result on
existence of almost automorphic solution is given (Theorem 4.5). Section 5 is devoted to
the study of almost automorphic solutions for the nonlinear equation (1.1). We present
two theorems of existence and uniqueness of almost automorphic solutions based on the
Banach fixed point theorem, that consider either global as well as local Lipschitz type
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conditions on the nonlinearity f(n, u) (see Theorems 5.2 and 5.4). Finally, the last section
6 provides some examples to illustrate how the abstract results of the previous sections
apply. Our first example brings into consideration a model that describes the number
of a population of cells distinguished by their individual size. We present their abstract
formulation and we give new insights on existence and uniqueness of almost automorphic
solutions for the fractional model.

2. Preliminaries

Let X be a complex Banach space. We denote by s(Z, X) the vector space consisting
of all vector-valued sequences f : Z → X. Let ρ : Z → (0,∞) be a a positive sequence
(weight). Let 1 ≤ p < ∞ be given. By lpρ(Z, X) we denote the set of vector-valued
sequences f : Z→ X such that

‖f‖lpρ :=
∞∑

n=−∞

‖f(n)‖pρ(n) <∞.

When X = C we write s(Z) and lpρ(Z) respectively. Moreover, if ρ(n) ≡ 1 then we write
lp(Z). We define the forward Euler operator ∆ : s(Z, X)→ s(Z, X) given by

∆f(n) = f(n+ 1)− f(n), n ∈ Z.
Recursively we define

∆k+1 = ∆k∆ = ∆∆k, k ∈ N,
and ∆0 = I is the identity operator. It is easy to see that

∆kf(n) =
k∑
j=0

(−1)k−j
(
k

j

)
f(n+ j).

In particular ∆1 = ∆. In addition, for α > 0, we consider the scalar sequence {kα(n)}n∈N0

defined by

kα(n) :=
Γ(n+ α)

Γ(α)Γ(n+ 1)
.

We note that the kernel kα satisfies the semigroup property in N0, that is,

(kα ∗ kβ)(n) =
n∑
j=0

kα(n− j)kβ(j) = kα+β(n)

with n ∈ N0 and α, β > 0. This property has been observed in [9] and follows easily
by noting that the kernel kα(n) can be equivalently defined by means of the generating
function

∞∑
n=0

kα(n)zn =
1

(1− z)α
, |z| < 1,

see [47, Vol I, p.77]. Furthermore, the following equality holds: for α > 0,

kα(n) =
nα−1

Γ(α)
(1 +O(

1

n
)), n ∈ N,

([47, Vol. I, p.77 (1.18)]) and kα is increasing (as a function of n) for α > 1, decreasing
for 0 < α < 1 and k1(n) = 1 for n ∈ N ([47, Theorem III.1.17]). We note that kα(n) is in
agreement with the kernel used in the definition of discrete fractional derivative for α < 0
and step h = 1 given recently in [40, formula (27)]. The above considerations suggest the
following definition.
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Definition 2.1. Let α > 0 be given and ρ(n) = |n|α−1, n ∈ Z. The α-th fractional sum of
a sequence f ∈ l1ρ(Z, X) is defined by

∆−αf(n) :=
n∑

j=−∞

kα(n− j)f(j), n ∈ Z.

See also [35] for related work on a slight variant of this definition.

Remark 2.2. The previous definition can be numerically compared with the continuous
fractional integral in the sense of Weyl, see [40, Section 3.3]. Moreover, we observe that
as a consequence of the semigroup property of the kernel kα we have that ∆−α∆−β =
∆−(α+β) = ∆−β∆−α.

In what follows, we always denote ρ(n) = |n|α−1, n ∈ Z.

Definition 2.3. Let α > 0 be given. The α-th fractional difference of a sequence f ∈
l1ρ(Z, X) is defined by

∆αf(n) := ∆m∆−(m−α)f(n), n ∈ Z,

with m = [α] + 1.

Remark 2.4. Note that if f ∈ l1ρ(Z, X) then

∆−(m−α)∆mf(n) =
n∑

j=−∞

km−α(n− j)∆mf(j)

=
n∑

j=−∞

km−α(n− j)
m∑
i=0

(−1)m−i
(
m

i

)
f(j + i)

=
m∑
i=0

(−1)m−i
(
m

i

) n∑
j=−∞

km−α(n− j)f(j + i)

=
m∑
i=0

(−1)m−i
(
m

i

) n+i∑
u=−∞

km−α(n+ i− u)f(u)

=
m∑
i=0

(−1)m−i
(
m

i

)
∆−(m−α)f(n+ i) = ∆m∆−(m−α)f(n),

where we have applied the Fubini’s Theorem and a change of variable. In other words,
the discrete notions of fractional difference when defined either in the sense of Caputo or
Riemann-Liouville, coincide.

For a sequence defined on N0, the theory and applications of fractional differences
defined by means of the kernel kα(n) is developed in [9]. Furthermore, it is clear from
Definition 2.3 that lim

α→0
∆αf(n) = f(n) = lim

α→0
∆−αf(n) for f ∈ l1ρ(Z, X), with α > 0.

Now we recall the notion of almost automorphic sequences. A sequence f : Z → X is
called almost automorphic if for every integer sequence {k′n}, there exists a subsequence
{kn} such that

f̄(k) := lim
n→∞

f(k + kn)

is well defined for each k ∈ Z and lim
n→∞

f̄(k − kn) = f(k), see [4, Definition 2.1] and

references therein. We denote by AAd(Z, X) the set of almost automorphic sequences. It
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is well known that the set AAd(Z, X) endowed with the norm ‖f‖∞ := supk∈Z‖f(k)‖ is a
Banach space, see [4, Theorem 2.4]. A typical example is

f(k) = sin

(
1

2 + cos(k) + cos(
√

2k)

)
, k ∈ Z.

Throughout this paper, we use several properties about almost automorphic sequences
that appear in [4]. In particular, we will need the following theorem.

Theorem 2.5. [4, Theorem 2.10] Let u : Z → X be a discrete almost automorphic
sequence and let f : Z×X → X be a discrete almost automorphic function in k ∈ Z for
each x ∈ X that satisfies a global Lipschitz condition in x ∈ X uniformly in k ∈ Z, that is,
there is a constant L > 0 such that ‖f(k, x)− f(k, y)‖ ≤ L‖x− y‖, for all x, y ∈ X, k ∈ Z
then, the Nemytskii operator U : Z → X defined by U(k) = f(k, u(k)) is discrete almost
automorphic.

The previous theorem admits a new version with local conditions on the function f, see
[3].

Corollary 2.6. Let f : Z×X → X be a discrete almost automorphic function in k ∈ Z
for each x ∈ X that satisfies a local Lipschitz condition that is, for each positive number r,
for all k ∈ Z and for all x, y ∈ X with ‖x‖ ≤ r and ‖y‖ ≤ r, we have ‖f(k, x)−f(k, y)‖ ≤
L(r)‖x − y‖, where L : R+ → R+ is a nondecreasing function. Then, the conclusion of
the previous theorem is true.

We will need the following function, called stable Lévy process,

(2.1) ft,α(λ) =
1

2πi

∫ σ+i∞

σ−i∞
ezλ−tz

α

dz, σ > 0, t > 0, λ ≥ 0, 0 < α < 1,

where the branch of zα is so taken that Re(zα) > 0 for Re(z) > 0. This branch is single-
valued in the z-plane cut along the negative real axis.

Proposition 2.7. The following properties hold:

(i)

∫ ∞
0

e−λaft,α(λ)dλ = e−ta
α

, t > 0, a > 0.

(ii) ft,α(λ) ≥ 0, λ > 0.

(iii)

∫ ∞
0

ft,α(λ)dλ = 1.

For a proof, see [46, p.260-262]. We also recall that the Mittag-Leffler function is defined
as follows

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, α > 0, β > 0, z ∈ C.

One of the most interesting properties is associated with their Laplace transform:

(2.2)

∫ ∞
0

e−λttβ−1Eα,β(±ωtα)dt =
λα−β

λα ∓ ω
, Re(λ) > |ω|1/α,

see [42, Section 1.2 , formula (1.80)] and with their asymptotic behavior: If 0 < α <
2, β > 0, then

Eα,β(z) =
1

α
z

1−β
α exp(z1/α) + εα,β(z), |arg(z)| ≤ 1

2
απ
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where

εα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O(|z|N ) (z →∞).

For more details on the Mittag-Leffler function see [37, Appendix E].
We also recall the function

gα(t) =
tα−1

Γ(α)
, α > 0.

For further use, we also introduce the following definition.

Definition 2.8. An operator-valued sequence {S(n)}n∈N0 ⊂ B(X) is called summable if

‖S‖1 :=
∞∑
n=0

‖S(n)‖ <∞.

3. Operator resolvent sequences

In this section, we introduce the notion of α-resolvent family of bounded and linear
operators. This concept will be useful in the treatment of fractional difference equations
as we will see in the next section. Moreover, the knowledge of the properties of the
family of bounded operators provide insights on the qualitative behavior of the solutions
of fractional difference equations.

Definition 3.1. Let α > 0 and A be a closed linear operator with domain D(A) defined on
a Banach space X. An operator-valued sequence {Sα(n)}n∈N0 ⊂ B(X) is called a discrete
α-resolvent family generated by A if it satisfies the following conditions

(i) Sα(n)Ax = ASα(n)x for n ∈ N0 and x ∈ D(A);
(ii) Sα(n)x = kα(n)x+ A(kα ∗ Sα)(n)x, for all n ∈ N0 and x ∈ X.

For α > 0 fixed and each n ∈ N we define the sequence {βα,n(j)}j=1,...,n as follows:
For n = 1,

βα,1(1) = kα(1).

For n = 2,
βα,2(1) = kα(2)− kα(1)βα,1(1),

and
βα,2(2) = kα(1)βα,1(1).

For n = 3,
βα,3(1) = kα(3)− kα(2)βα,1(1)− kα(1)βα,2(1),

βα,3(2) = kα(2)βα,1(1) + kα(1)βα,2(1)− kα(1)βα,2(2)

and
βα,3(3) = kα(1)βα,2(2).

For n ≥ 4,

βα,n(1) = kα(n)−
n−1∑
j=1

kα(n− j)βα,j(1),

βα,n(l) =
n−1∑
j=l−1

kα(n− j)βα,j(l − 1)−
n−1∑
j=l

kα(n− j)βα,j(l) 2 ≤ l ≤ n− 1,

and
βα,n(n) = kα(1)βα,n−1(n− 1).
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The following result shows some properties of α-resolvent families concerning their
regularity, and that they have always an explicit representation in terms of a bounded
linear operator.

Theorem 3.2. Let {Sα(n)}n∈N0 ⊂ B(X) be a discrete α-resolvent family generated by A.
Then the following statements holds:

(i) 1 ∈ ρ(A).
(ii) for all x ∈ X we have that Sα(0)x = (I − A)−1x and

Sα(n)x =
n∑
j=1

βα,n(j)(I − A)−(j+1)x, n ∈ N.

(iii) for all x ∈ X we have that Sα(0)x ∈ D(A) and Sα(n)x ∈ D(A2) for all n ∈ N.

Proof. Note that by Definition 3.1 part (ii) we have that

Sα(0)x = x+ ASα(0), x ∈ X.

Then

(I − A)Sα(0)x = x x ∈ X,

and using Definition 3.1 part (i) we get that

Sα(0)(I − A)x = x, x ∈ D(A),

and we conclude that 1 ∈ ρ(A) and Sα(0)x = (I − A)−1x for all x ∈ X.
Now let x ∈ X. We have that

Sα(1)x = kα(1)x+ kα(1)ASα(0)x+ ASα(1)x,

then

(I − A)Sα(1)x = kα(1)

(
I + A(I − A)−1

)
x = kα(1)(I − A)−1x,

where we have used that Sα(0) = (I−A)−1 and A(I−A)−1 = (I−A)−1−I, and therefore

Sα(1)(I − A)x = kα(1)(I − A)−1x, x ∈ D(A).

Then Sα(1)x = kα(1)(I − A)−2x = βα,1(1)(I − A)−2x. By induction, we suppose that

Sα(j)x =

j∑
i=1

βα,j(i)(I − A)−(i+1)x

for j ≤ n− 1. We write

Sα(n)x = kα(n)x+ A

n∑
j=0

kα(n− j)Sα(j)x

= kα(n)x+ A

n−1∑
j=1

kα(n− j)Sα(j)x+ kα(n)ASα(0)x+ ASα(n)x.
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Then

(I − A)Sα(n)x = kα(n)(I + ASα(0))x+ A

n−1∑
j=1

kα(n− j)Sα(j)x

= kα(n)(I + A(I − A)−1)x+ A
n−1∑
j=1

kα(n− j)
j∑
i=1

βα,j(i)(I − A)−(i+1)x

= kα(n)(I + A(I − A)−1)x+ A
n−1∑
i=1

ηα,n(i)(I − A)−(i+1)x,

with ηα,n(i) :=
n−1∑
j=i

kα(n − j)βα,j(i) for i = 1, . . . , n − 1. Using that A(I − A)−1 = (I −

A)−1 − I, we get that

(I − A)Sα(n)x = kα(n)(I − A)−1x+
n−1∑
i=1

ηα,n(i)

(
(I − A)−(i+1) − (I − A)−i

)
x

=
n∑
j=1

βα,n(j)(I − A)−jx,

where βα,n(n) = ηα,n(n − 1), βα,n(j) = ηα,n(j − 1) − ηα,n(j) for j = 2, . . . , n − 1, and
βα,n(1) = kα(n)− ηα,n(1). So for x ∈ D(A) the identity

Sα(n)(I − A)x =
n∑
j=1

βα,n(j)(I − A)−jx

holds. Finally, observe that by part (ii) of the above result, for all x ∈ X it is a straightfor-
ward consequence that Sα(0)x ∈ D(A) and Sα(n)x ∈ D(A2) for n ∈ N. Then we conclude
the result.

�

Remark 3.3. Observe that the property (ii) remember the solution of the equation ∆u(n) =
Au(n+ 1), n ∈ N0 which is given by u(n) = (I −A)−nu(0), n ∈ N0. In other words, even
when A is an unbounded operator we have that the discrete semigroup, namely (I −A)−n,
constitutes a sequence of bounded linear operators. This is an interesting feature that
Definition 3.1 brings to the fractional case and therefore permits to treat the fractional
homogeneous problem ∆αu(n) = Au(n + 1), n ∈ N0, α > 0 where A is unbounded, by
means of a family of bounded and linear operators that can play the role of discrete semi-
groups.

Remark 3.4. We note that property (ii) indicates a better regularity that is not present in
the continuous case. This is implied by the regularizing character of the property Sα(0) =
(I − A)−1, which in turn responds to the discrete character of the scale Z.

Our next result gives necessary conditions in terms of C0-semigroups for the existence
and summability of a discrete α-resolvent family. It is notable that we can give an explicit
form of such family in terms of functions of probability, like the Lévy process fs,α(t) and

the Poisson distribution pn(t) = tne−t

n!
. Observe that they play the role of sampling of the

given semigroup.
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Theorem 3.5. Let 0 < α < 1 and A be the generator of an exponentially stable C0-
semigroup {T (t)}t≥0 defined on a Banach space X. Then A generates a discrete α-resolvent
family {Sα(n)}n∈N0 defined by

(3.1) Sα(n)x :=

∫ ∞
0

∫ ∞
0

e−t
tn

n!
fs,α(t)T (s)x ds dt, n ∈ N0, x ∈ X.

Moreover, {Sα(n)}n∈N0 is summable.

Proof. Let M > 0 and ω > 0 be such that ‖T (t)‖ ≤Me−ωt. Define

Tα(t)x :=

∫ ∞
0

fs,α(t)T (s)x ds, t > 0, x ∈ X.

First, we observe that Tα(t) is well defined. Indeed, note that by (2.1) and Fubini’s
Theorem we obtain∫ ∞
0

e−ωsfs,α(t) ds =
1

2πi

∫ σ+i∞

σ−i∞

∫ ∞
0

e−ωsezte−sz
α

ds dz =
1

2πi

∫ σ+i∞

σ−i∞
ezt(

∫ ∞
0

e−(z
α+ω)s ds) dz.

Hence, by Cauchy’s formula and (2.2) we get

(3.2)

∫ ∞
0

e−ωsfs,α(t) ds =
1

2πi

∫ σ+i∞

σ−i∞
ezt

1

zα + ω
dz = tα−1Eα,α(−ωtα).

This gives

(3.3) ‖Tα(t)‖ ≤
∫ ∞
0

fs,α(t)‖T (s)‖ ds ≤M

∫ ∞
0

e−ωsfs,α(t) ds = Mtα−1Eα,α(−ωtα),

and hence, again by (2.2) we obtain∫ ∞
0

e−Re(λ)t‖Tα(t)‖ dt ≤M

∫ ∞
0

e−Re(λ)ttα−1Eα,α(−ωtα) dt =
M

[Re(λ)]α + ω
,

for Re(λ) > |w|1/α. Consequently, Tα(t) is Laplace transformable and, using Fubini’s
theorem, we obtain

T̂α(λ)x :=

∫ ∞
0

e−λtTα(t)x dt =

∫ ∞
0

(

∫ ∞
0

e−λtfs,α(t) dt)T (s)x ds.

Therefore, by (i) in Proposition 2.7 and a well-known property on the Laplace transform
of C0-semigroups, we have

(λαI − A)T̂α(λ)x = (λαI − A)

∫ ∞
0

e−sλ
α

T (s)x ds = x, x ∈ X,

and

T̂α(λ)(λαI − A)x =

∫ ∞
0

e−sλ
α

T (s)(λαI − A)x ds = x, x ∈ D(A).

It shows that A commutes with Tα(t) on D(A) and

T̂α(λ)x =
1

λα
x+ A

1

λα
T̂α(λ)x, x ∈ X.

By inversion of the Laplace transform, we obtain the identity

(3.4) Tα(t)x = gα(t)x+ A

∫ t

0

gα(t− s)Tα(s)x ds, x ∈ X,
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and since A is closed, we also get

Tα(t)x = gα(t)x+

∫ t

0

gα(t− s)Tα(s)Axds, x ∈ D(A).

Note that the for ω > 0 and 0 < α < 1 the function t→ tα−1Eα,α(−ωtα) is integrable on
R+, see [43, Lemma 3.9]. Since e−t t

n

n!
≤ 1 for all t ≥ 0 and n ∈ N it follows from (3.3)

that Sα(n) defined by (3.1) exists for all n ∈ N and is summable. In fact,
(3.5)
∞∑
n=0

‖Sα(n)‖ ≤
∞∑
n=0

∫ ∞
0

e−t
tn

n!
‖Tα(t)‖ dt =

∫ ∞
0

‖Tα(t)‖ dt ≤M

∫ ∞
0

tα−1Eα,α(−ωtα) dt <∞.

Finally, we prove that Sα(n) satisfies (i) and (ii) in Definition 3.1. Indeed, (i) follows from
the fact that A commutes with Tα(t) and A is closed. To prove (ii), we note that from
(3.4) we obtain

Sα(n)x =

∫ ∞
0

e−t
tn

n!
[gα(t)x+ A

∫ t

0

gα(t− s)Tα(s)x ds] dt

=

∫ ∞
0

e−t
tn

n!
gα(t)x dt+ A

∫ ∞
0

e−t
tn

n!

∫ t

0

gα(t− s)Tα(s)x ds dt

= kα(n)x+ A

∫ ∞
0

∫ ∞
s

e−t
tn

n!
gα(t− s)Tα(s)x dt ds

= kα(n)x+ A

∫ ∞
0

(∫ ∞
0

e−(τ+s)
(τ + s)n

n!
gα(τ) dτ

)
Tα(s)x ds

= kα(n)x+ A

∫ ∞
0

e−s
(∫ ∞

0

e−τ

n!

n∑
j=0

(
n

j

)
τn−jsjgα(τ) dτ

)
Tα(s) ds

= kα(n)x+ A

∫ ∞
0

e−s
n∑
j=0

n!

j!(n− j)!
sj
(∫ ∞

0

e−τ

n!
τn−jgα(τ) dτ

)
Tα(s)x ds

= kα(n)x+ A

∫ ∞
0

e−s
n∑
j=0

sj

j!

(∫ ∞
0

e−τ
τn−j

(n− j)!
gα(τ) dτ

)
Tα(s)x ds

= kα(n)x+ A

∫ ∞
0

e−s
n∑
j=0

sj

j!
kα(n− j)Tα(s)x ds

= kα(n)x+ A

n∑
j=0

kα(n− j)
(∫ ∞

0

sj

j!
e−sTα(s)x ds

)
= kα(n)x+ A

n∑
j=0

kα(n− j)Sα(n)x,

where we have made repeated use of Fubini’s theorem and the formula

∫ ∞
0

e−βttα−1 dt =

Γ(α)

βα
valid for α, β > 0. See [25, Formula 3.381(4)]. It proves the claim and the theorem.

�
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Remark 3.6. A careful reading of the proof of Lemma 3.9 in [43] combined with the estimate
(3.5) shows that for 0 < α < 1 we have

‖Sα‖1 =
∞∑
n=0

‖Sα(n)‖ ≤ 1

ωαπ

(π
2
− arctan(cot(απ))

)
=

1

ω
.

Using the Gearhart-Prüss-Greiner theorem that characterizes the uniform exponential
stability of semigroups in Hilbert spaces (see [19, Chapter V, Theorem 1.11]), we obtain
the following remarkable corollary.

Corollary 3.7. Let 0 < α < 1 and A be the generator of a C0-semigroup on a Hilbert
space H such that {µ ∈ C : Re(µ) > 0} ⊂ ρ(A) and satisfy

sup
Re(µ)>0

‖(µ− A)−1‖ <∞.

Then A generates a discrete α-resolvent family which is, in addition, summable.

Remark 3.8. The same conclusion of Corollary 3.7 can be obtained with different spectral
conditions on the generator A by assuming more regularity on the semigroup. For example,
suppose that A is the generator of an analytic C0- semigroup such that

sup
λ∈σ(A)

Re(λ) < 0,

where σ(A) denotes the spectrum of A, then the same conclusion of Corollary 3.7 holds.
Moreover, we have the advantage that we can consider Banach spaces instead of only
Hilbert. See [41, Theorem 4.3, p.118].

4. Almost automorphic solutions for linear fractional difference
equations

Let A be a closed linear operator with domain D(A) defined on X. In this section, we
consider the non-homogeneous linear fractional difference equation given by

(4.1) ∆αu(n) = Au(n+ 1) + f(n), n ∈ Z,
for 0 < α < 1.

Remember from the previous section that ρ(n) = |n|α−1, n ∈ Z.

Definition 4.1. A sequence u ∈ l1ρ(Z, X) is called a strong solution for equation (4.1) if
u(n) ∈ D(A) for all n ∈ Z and u satisfies (4.1).

The following theorem is one of the main results of this paper. Observe that l1(Z, X) ⊂
l1ρ(Z, X) for 0 < α < 1.

Theorem 4.2. Let 0 < α < 1 and A be the generator of a summable discrete α-resolvent
family {Sα(n)}n∈N0 ⊂ B(X). If f ∈ l1(Z, D(A)), then

u(n) :=
n−1∑
j=−∞

Sα(n− 1− j)f(j), n ∈ Z,

is a strong solution of (4.1). Moreover u ∈ l1(Z, X).

Proof. Note that u is well defined and u ∈ l1(Z, X) with ‖u‖l1 ≤ ‖Sα‖1‖f‖l1 . Next, let
n ∈ Z be fixed and note that Sα(m)f(n − 1 − m) ∈ D(A) for all m ∈ N0 by (iii) of
Theorem 3.2. Also f(j) ∈ D(A) for all j ∈ Z by hypothesis. Then

ASα(n− 1− j)f(j) = Sα(n− 1− j)Af(j).
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Using that A is a closed operator, we get that u(n) ∈ D(A) for all n ∈ Z. To finish we
prove that u satisfies (4.1):

∆αu(n) = ∆∆−(1−α)u(n) = ∆−(1−α)u(n+ 1)−∆−(1−α)u(n)

=
n+1∑
j=−∞

k1−α(n+ 1− j)
j−1∑
i=−∞

Sα(j − 1− i)f(i)

−
n∑

j=−∞

k1−α(n− j)
j−1∑
i=−∞

Sα(j − 1− i)f(i)

=
n+1∑
j=−∞

k1−α(n+ 1− j)
j−1∑
i=−∞

(
kα(j − 1− i)f(i) +

j−1−i∑
l=0

kα(j − 1− i− l)ASα(l)f(i)

)

−
n∑

j=−∞

k1−α(n− j)
j−1∑
i=−∞

(
kα(j − 1− i)f(i) +

j−1−i∑
l=0

kα(j − 1− i− l)ASα(l)f(i)

)
.

It is easy to see that we can apply Fubini’s Theorem to all above summands, where we
use that f ∈ l1(Z, D(A)) and {Sα(n)}n∈N0 is summable. Then, after changes of variable,
we get that

∆αu(n) =
n∑

i=−∞

f(i)
n+1∑
j=i+1

k1−α(n+ 1− j)kα(j − 1− i)

−
n−1∑
i=−∞

f(i)
n∑

j=i+1

k1−α(n− j)kα(j − 1− i)

+
n+1∑
j=−∞

k1−α(n+ 1− j)
j−1∑
i=−∞

j∑
v=i+1

kα(j − v)ASα(v − 1− i)f(i)

−
n∑

j=−∞

k1−α(n− j)
j−1∑
i=−∞

j∑
v=i+1

kα(j − v)ASα(v − 1− i)f(i)

=
n∑

i=−∞

f(i)−
n−1∑
i=−∞

f(i) +
n+1∑
j=−∞

k1−α(n+ 1− j)
j∑

v=−∞

kα(j − v)Au(v)

−
n∑

j=−∞

k1−α(n− j)
j∑

v=−∞

kα(j − v)Au(v)

= f(n) +
n+1∑
v=−∞

Au(v)−
n∑

v=−∞

Au(v) = f(n) + Au(n+ 1),

where we have use the semigroup property of the kernel kα and that k1(n) = 1 for all
n ∈ N0. �

From Corollary 3.7 we immediately get the following result.

Corollary 4.3. Let 0 < α < 1 and A be the generator of a C0-semigroup on a Hilbert
space H such that {µ ∈ C : Re(µ) > 0} ⊂ ρ(A) and satisfy

sup
Re(µ)>0

‖(µ− A)−1‖ <∞.
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Then for all f ∈ l1(Z, D(A)) the equation (4.1) admits a strong solution u ∈ l1(Z, H).

Since our objective is to study the solubility of (4.1) in the space of almost automorphic
sequences, where the forcing term f is only bounded, we need to introduce the next
definition. It is important to observe that due to Theorem 4.2 the following definition
is consistent, in the sense that when the forcing term is sufficiently regular, then a mild
solution is indeed a strong one.

Definition 4.4. Let 0 < α < 1, A be the generator of a discrete α-resolvent family
{Sα(n)}n∈N0 ⊂ B(X), and f : Z→ X. The sequence

u(n) :=
n−1∑
j=−∞

Sα(n− 1− j)f(j), n ∈ Z.

is called a mild solution for equation (4.1) if m → Sα(m)f(n −m) is summable on N0,
for each n ∈ Z.

The following result is now an easy consequence of the previous construction.

Theorem 4.5. Let 0 < α < 1 and A be the generator of a summable discrete α-resolvent
family {Sα(n)}n∈N0 ⊂ B(X). If f ∈ AAd(Z, X), then

u(n) =
n−1∑
j=−∞

Sα(n− 1− j)f(j), n ∈ Z,

is an almost automorphic mild solution of (4.1).

Proof. First note that u is well defined since

‖u(n)‖ ≤ ‖Sα‖1‖f‖∞,
for all n ∈ Z. We also have u ∈ AAd(Z, X) by [4, Theorem 2.13] and [4, Remark 2.14].
Then u is an almost automorphic mild solution of (4.1). �

5. Almost automorphic solutions for nonlinear fractional difference
equations

In this section we focus in the study of solutions for the nonlinear fractional difference
equation

(5.1) ∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,

for 0 < α < 1, where A is the generator of a discrete α-resolvent family {Sα(n)}n∈N0 ⊂
B(X). We want to find almost automorphic solutions for (5.1) when f ∈ AAd(Z×X,X),
that is, f is almost automorphic in the first discrete variable.

Definition 5.1. Let 0 < α < 1, A be the generator of a discrete α-resolvent family
{Sα(n)}n∈N0 ⊂ B(X), and f : Z × X → X. We say that a sequence u ∈ s(Z, X) is a
mild solution of (5.1) if m→ Sα(m)f(n−m) is summable on N0, for each n ∈ Z and u
satisfies

u(n+ 1) =
n∑

j=−∞

Sα(n− j)f(j, u(j)), n ∈ Z.

Our first result in this section provides a simple criteria for existence and uniqueness
of almost automorphic mild solutions.
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Theorem 5.2. Let 0 < α < 1 and A be the generator of a summable discrete α-resolvent
family {Sα(n)}n∈N0 ⊂ B(X). If f ∈ AAd(Z × X,X) and it is globally Lipschitz in the
following sense:

‖f(n, x)− f(n, y)‖ ≤ L‖x− y‖, for all n ∈ Z, and x, y ∈ X,

where L < 1
‖Sα‖1 , then (5.1) admits a unique almost automorphic mild solution.

Proof. We consider the operator T : AAd(Z, X)→ AAd(Z, X) defined by

(5.2) (Tu)(n) :=
n−1∑
j=−∞

Sα(n− 1− j)f(j, u(j)), n ∈ Z.

Note that T is well defined by [4, Theorem 2.10] and [4, Theorem 2.13]. In addition, for
u, v ∈ AAd(Z, X) and n ∈ Z the following inequality holds,

‖(Tu)(n)− (Tv)(n)‖ ≤
n−1∑
j=−∞

‖Sα(n− 1− j)(f(j, u(j))− f(j, v(j)))‖

≤ L
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖u(j)− v(j)‖

≤ L‖Sα‖1‖u− v‖∞.

By hypothesis we conclude that T is a contraction, and using Banach fixed point theorem
we get that there exists a unique almost automorphic mild solution of (5.1) . �

Using Remark 3.6 we have a precise estimate for ‖Sα‖1 that can be used to prove the
following corollary.

Corollary 5.3. Let 0 < α < 1 and A be the generator of a C0-semigroup T (t) such that
‖T (t)‖ ≤Me−ωt, for some M > 0 and ω > 0 . If f ∈ AAd(Z×X,X) is globally Lipschitz
with constant

L <
1

ω

then (5.1) admits a unique almost automorphic mild solution.

Proof. It is clear using Theorem 3.5 and the proof of Theorem 5.2. �

We end this section with a modified hypothesis on the previous Lipschitz condition,
assuming local instead of global. See Corollary 2.6.

Theorem 5.4. Let 0 < α < 1 and A be the generator of a summable discrete α-resolvent
family {Sα(n)}n∈N0 ⊂ B(X). Let f : Z×X → X be a discrete almost automorphic function
in k ∈ Z for each x ∈ X that satisfies a local Lipschitz condition. If there exist r0 > 0
such that

‖Sα‖1
(
L(r0) +

supk ‖f(k, 0)‖
r0

)
< 1

then (5.1) admits a unique almost automorphic mild solution u with ‖u‖∞ := supk ‖u(k)‖ ≤
r0.

Proof. First we consider the operator T : AAd(Z, X) → AAd(Z, X) given by (5.2), that
is well defined by Corollary 2.6 and [4, Theorem 2.13].
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Let Br0(0) := {u ∈ AAd(Z, X) : ‖u‖∞ < r0} be the ball of radius r0 on AAd(Z, X). We
show that T

(
Br0(0)

)
⊂ Br0(0). Indeed, let u be in Br0(0). Since f is locally Lipschitz, we

get that

‖f(k, u(k))‖ ≤ ‖f(k, u(k))− f(k, 0)‖+ ‖f(k, 0)‖ ≤ L(r0)‖u(k)‖+ ‖f(k, 0)‖, k ∈ Z.

Moreover, we have the following estimate

‖T (u)(n)‖ ≤
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖f(j, u(j))− f(j, 0)‖+
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖f(j, 0)‖

≤ L(r0)
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖u(j)‖+ ‖Sα‖1 sup
k
‖f(k, 0)‖

≤ ‖Sα‖1
(
L(r0) +

supk ‖f(k, 0)‖
r0

)
r0 ≤ r0,

proving the claim. On the other hand, for u, v ∈ Br0(0) we have that

‖Tu(n)− Tv(n)‖ ≤
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖f(j, u(j))− f(j, v(j))‖

≤ L(r0)
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖u(j)− v(j)‖

≤ ‖Sα‖1L(r0)‖u− v‖∞

Observing that ‖Sα‖1L(r0) < 1, it follows that T is a contraction in Br0(0). Then there
is a unique u ∈ Br0(0) such that Tu = u.

�

The following corollary is an immediate consequence of the previous results.

Corollary 5.5. Let 0 < α < 1 and A be the generator of a C0-semigroup T (t) such that
‖T (t)‖ ≤Me−ωt, for some M > 0 and ω > 0 . If f ∈ AAd(Z×X,X) is locally Lipschitz
and satisfy

1

ω

(
L(r0) +

supk ‖f(k, 0)‖
r0

)
< 1,

for some r0 > 0, then (5.1) admits a unique almost automorphic mild solution.

6. Examples and Applications

In this section we give some examples and applications to illustrate how our abstract
results apply.

Example 6.1. We consider a population of cells that are distinguished by their individual
size. We can describe the population at discrete time k ∈ N by the number n(k, s) of cells
having size s by means of the following evolution equation (see [19, p.349] and references
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therein)

(6.1)

n(k − 1, s)− n(k, s) = − ∂

∂s
n(k, s)− µ(s)n(k, s)− b(s)n(k, s)

+

{
4b(2s)n(k, 2s) β/2 ≤ s ≤ 1/2

0 1/2 < s ≤ 1

with boundary condition n(k− 1, β/2) = 0, k ∈ N and initial condition n(0, s) = n0(s) for
β/2 ≤ s ≤ 1. Here β > 0 denotes the minimal cell size, µ is a positive continuous function
on [β/2, 1] corresponding to the death rate, and b is the division, being a continuous
function satisfying b(s) > 0 for s ∈ (β, 1) and b(s) = 0 otherwise.

We rewrite (6.1) as an abstract difference equation. As a natural Banach space we
choose X = L1(β/2, 1) in which the norm ‖f‖ of a positive function is the size of the
total cell population represented by f.

We define

A0f := −f ′ − (µ+ b)f, D(A0) := {f ∈ W 1,1(β/2, 1) : f(β/2) = 0},

and

Bf(s) :=

{
4b(2s)f(2s) β/2 ≤ s ≤ 1/2

0 1/2 < s ≤ 1

Set A := A0 + B with D(A) = D(A0). With this definition, equation (6.1) becomes the
abstract difference equation

∆u(k) = Au(k + 1), k ∈ N0,

where u : N0 → L1(β/2, 1) is defined by u(k)(s) := n(k, s). By [19, Chapter VI, Proposi-
tion 1.3], the operator (A,D(A)) generates a strongly continuous semigroup {T (t)}t≥0 on
X. Moreover, by [19, Chapter VI, Corollary 1.17] the semigroup {T (t)}t≥0 is positive on
the Banach lattice X := L1(β/2, 1) and uniformly exponentially stable if and only if

ξ(0) := −1 +

∫ 1/2

β/2

4b(2s)e−
∫ 2σ
σ (µ(τ)+b(τ))dτdσ < 0

See [19, Chapter VI, Theorem 1.19]. By Theorem 3.5, we conclude that for each 0 < α < 1
the operator A generates a summable α-resolvent family Sα(n).

Example 6.2. Next, we consider the fractional difference equation

(6.2) ∆αu(k) = Au(k + 1) +
νg(k)u(k)

1 + supk |u(k)|
, k ∈ Z,

where 0 < α < 1 act as a tuning parameter for the difference equation (6.2), the operator
A is the generator of an exponentially stable C0-semigroup on a Banach space X and g(k)
is an almost automorphic function that play the role of harmonic oscillations covered with
big noise [45]. The parameter ν > 0 is a control of the size of the such oscillation.

Note that

f(k, x) =
νg(k)x

1 + ‖x‖∞
, k ∈ Z, x ∈ X.
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Hence, we have the estimate

‖f(k, x)− f(k, y)‖∞ ≤ ν|g(k)|‖ x

1 + ‖x‖∞
− y

1 + ‖y‖∞
‖∞

≤ ν|g(k)|
∥∥∥(x− y)

1

1 + ‖x‖∞
+ y(

1

1 + ‖x‖∞
− 1

1 + ‖y‖∞
)
∥∥∥
∞

≤ ν|g(k)|

[
‖x− y‖∞ + ‖y‖∞

∣∣∣‖y‖∞ − ‖x‖∞∣∣∣]
≤ ν‖g‖∞(1 + ‖y‖)‖x− y‖∞.

Therefore, we can choose

L(r) = ν‖g‖∞(1 + r), r > 0,

to deduce that f(k, x) is locally Lipschitz. Since f(k, 0) = 0, we obtain that for sufficiently
small ν the condition

‖Sα‖1L(r) < 1

is satisfied. We conclude, by Theorem 5.4, that the fractional model (6.2) admits a unique
almost automorphic mild solution.

Example 6.3. Let 0 < α < 1. We consider the fractional difference scalar equation

∆αu(n) = λu(n+ 1) + f(n, u(n)), n ∈ Z,

where λ is a complex number with Re(λ) < 0 and f : Z×C→ C. It is clear that λ is the
generator of the exponentially stable C0-semigroup T (t) = eλt, for t ≥ 0. Then we apply
Theorem 3.5, and we assert that λ is the generator of a summable discrete α-resolvent
family {Sα(n)}n∈N0 given by

Sα(n) =

∫ ∞
0

∫ ∞
0

e−t
tn

n!
fs,α(t)eλs ds dt =

∫ ∞
0

e−t
tn

n!
tα−1Eα,α(λtα) dt

=
(−1)n

n!

(
L(tα−1Eα,α(λtα))

)(n)

(1) =
(−1)n

n!

(
(sα − λ)−1

)(n)

|s=1

,

where we have used (3.2) and (2.2) and L denotes Laplace transform.
On the other hand, by Theorem 3.2, the family {Sα(n)}n∈N0 has the representation given

by Sα(0) = (1− λ)−1 and Sα(n) =
n∑
j=1

βα,n(j)(1− λ)−(j+1), for n ∈ N0. Then we conclude

that the coefficients βα,n(j) can be obtained by means of

(
(sα − λ)−1

)(n)

|s=1

.

Remark 6.4. To finish, we mention that it is possible to apply the framework indicated in
this paper to study more complexes classes of fractional difference equations defined on the
scale Z, taking advantage on the properties of the convolution form that we have presented
in the definition of fractional difference considered in this paper and in [35]. One of the
most interesting open problems to be done, relies on the extension of the ideas that we have
indicated in this work to the case 1 < α ≤ 2. This is a not trivial task because it heavily
depends on each difference equation to be studied. Also, it is worthwhile to comment that
the theory presented is flexible to be adapted to the study of other qualitative behavior of
solutions, like almost periodic sequences, asymptotically almost periodic sequences, and so
on. We leave the study of such properties for future work.
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[39] G. M. N’Guérékata.Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer
Academic Publishers, 2001, New York- London-Moscow.

[40] M.D. Ortigueira, F.J.V. Coito and J.J. Trujillo. Discrete-time differential systems. Signal Process-
ing. 107 (2015), 198-217.

[41] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl.
Math. Sci. vol 44, Springer, New York, 1983.

[42] I. Podlubny. Fractional Differential Equations. Math. Sc. Eng. 198. Academic Press, San Diego,
1999.

[43] R. Ponce. Bounded mild solutions to fractional integro-differential equations in Banach spaces.
Semigroup Forum. 79, (2013), 377–392.

[44] Z. Xia. Weighted pseudo almost automorphic solutions of hyperbolic semilinear integro-differential
equations. Nonlinear Anal. 95 (2014), 50–65.

[45] Y. Yi. On almost automorphic oscillations. Differences and differential equations, vol. 42. Fields
Inst. Commun. Amer. Math. Soc., Providence, RI, 2004, pp. 75–99.

[46] K. Yosida. Functional Analysis. Springer Verlag, Berlin Heidelberg New York, 1980.
[47] A. Zygmund.Trigonometric Series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959.
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